Stage 1-Mental Multiplication

Counting in steps ('clever' counting)

Count in 2s

Count in 10s

1	2	3	4	5	6	7	8	q	1889
Ш	12	13	14	15	16	17	18	Ιq	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
ЧI	92	93	94	95	96	97	98	qq	100

Stage 1-Mental Multiplication

Doubling and halving

Find doubles to double 5 using fingers *e.g. double 3*

Grouping

Begin to use visual and concrete arrays and sets of objects to find the answers to 'three lots of four' or 'two lots of five' e.g. three lots of four

Stage 2-Mental Multiplication

Counting in steps ('clever' counting)

Count in 2s, 5s and 10s

Begin to count in 3s

Doubling and halving

Begin to know doubles of multiples of 5 to 100 *e.g. double 35 is 70*

Begin to double 2-digit numbers less than 50 with 1s digits of 1, 2, 3, 4 or 5

Stage 2-Mental Multiplication

Grouping

Use arrays to find answers to multiplication and relate to 'clever' counting

e.g. 3×4 as three lots of four things

e.g. 6×5 as six steps in the 5s count as well as six lots of five

Understand that 5×3 can be worked out as three 5s or five 3s

Stage 2-Mental Multiplication

Using number facts

Know doubles to double 20 e.g. double 7 is 14

Start learning $\times 2$, $\times 5$, $\times 10$ tables, relating these to 'clever' counting in 2s, 5s, and 10s e.g. $5 \times 10 = 50$, and five steps in the 10s count = 10, 20, 30, 40, 50

Stage 3-Mental Multiplication

Counting in steps ('clever' counting)

Count in 2s, 3s, 4s, 5s, 8s and 10s

1	2	3	4	5	6	7	8	q	10
П	12	13	14	15	16	17	18	lЯ	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
ЯI	92	93	94	95	96	97	98	99	100

Stage 3-Mental Multiplication

Doubling and halving

Find doubles of numbers to 50 using partitioning e.g. *double 48*

Use doubling as a strategy in multiplying by 2 e.g. 18×2 is double 18 = 36

Grouping

Recognise that multiplication is commutative

e.g.
$$4 \times 8 = 8 \times 4$$

Multiply multiples of 10 by 1-digit numbers

e.g.
$$30 \times 8 = 240$$

Multiply 'friendly' 2-digit numbers by 1-digit numbers

e.g.
$$13 \times 4$$

Using number facts

Know doubles to double 20

e.g. double 15 is 30

Know doubles of multiples of 5 to 100

e.g. double 85 is 170

Know ×2, ×3, ×4, ×5, ×8, ×10 tables facts

Stage 4-Mental Multiplication

Counting in steps (sequences)

Count in 2s, 3s, 4s, 5s, 6s, 7s, 8s, 9s, 10s, 11s, 12s, 25s, 50s, 100s and 1000s

Doubling and halving

Find doubles to double 100 and beyond using partitioning e.g. *double 126*

Begin to double amounts of money e.g. £3·50 doubled is £7

Use doubling as a strategy in multiplying by 2, 4 and 8 e.g. 34×4 is double 34 (68) doubled again = 136

Stage 4-Mental Multiplication

Grouping

Use partitioning to multiply 2-digit numbers by 1-digit numbers e.g. 24×5

$$20 \times 5 = 100$$

 $4 \times 5 = 20$
 $24 \times 5 = 120$
or $|00 - 20|$

Multiply multiples of 100 and 1000 by 1-digit numbers using tables facts e.g. $400 \times 8 = 3200$

Multiply near multiples by rounding e.g. 24×19 as $(24 \times 20) - 24 = 456$

Using number facts

Know times-tables up to 12×12

*	1	2	3	4	5	6	7	8	٩	10	п	12
-1	1	2	я	4	5	6	7	8	q	10	=	12
2	2	4	6	ø	10	12	14	16	18	20	ш	24
3	3	6	ď	12	15	18	21	24	27	30	22	36
4	4	8	12	16	20	24	28	32	36	40	33	48
5	5	10	15	20	25	30	35	40	45	50	44	60
6	6	12	8	24	30	36	42	48	54	60	55	72
7	7	14	21	28	35	42	49	56	63	70	66	84
8	8	16	24	32	40	48	56	64	72	80	77	96
q	q	8	27	36	45	54	63	72	81	90	88	108
10	10	20	30	40	50	60	70	80	90	100	99	120
ш	=	22	33	4	55	66	77	88	99	110	121	132
12	12	24	36	48	60	72	84	96	108	120	132	144

Overview of Strategies and Methods (Multiplication)

Stage 5-Mental Multiplication

Doubling and halving

Double amounts of money using partitioning e.g. *double £6·73*

Use doubling and halving as a strategy in multiplying by 2, 4, 8, 5 and 20 e.g. 58×5 is half of 58×10 (580) = 290

Grouping

Multiply whole numbers and decimals by 10, 100, 1000 e.g. $3.4 \times 100 = 340$

Use partitioning to multiply 'friendly' 2- and 3-digit numbers by 1-digit numbers e.g. 402×6 as 400×6 (2400) and 2×6 (12) = 2412

Use partitioning to multiply decimal numbers by 1-digit numbers e.g. 4.5×3 as 4×3 (12) and 0.5×3 (1.5) = 13.5 Multiply near multiples by rounding e.g. 32×29 as $(32 \times 30) - 32 = 928$

Stage 5-Mental Multiplication

Using number facts

Use times-tables facts up to 12×12 to multiply multiples of 10/100 of the multiplier

e.g. $4 \times 6 = 24$ so $40 \times 6 = 240$ and $400 \times 6 = 2400$

Use knowledge of factors and multiples in multiplication

e.g. 43×6 is double 43×3

e.g. 28 × 50 is half of 28 × 100 (2800) = 1400

Know square numbers and cube numbers

Stage 6-Mental Multiplication

Doubling and halving

Double decimal numbers with up to 2 places using partitioning e.g. double 36.73

36·73 72 I·46

Use doubling and halving as strategies in mental multiplication

Grouping

Use partitioning as a strategy in mental multiplication, as appropriate

e.g. 3060×4 as 3000×4 (12 000) and 60×4 (240) = 12 240 e.g. 8.4×8 as 8×8 (64) and 0.4×8 (3.2) = 67.2

Use factors in mental multiplication e.g. 421×6 as 421×3 (1263) doubled = 2526 e.g. 3.42×5 as half of $3.42 \times 10 = 17.1$

Multiply decimal numbers using near multiples by rounding $\times 6 \times 6$ e.g. $4 \cdot 3 \times 19$ as $(4 \cdot 3 \times 20) - 4 \cdot 3 = 81 \cdot 7$

Stage 6-Mental Multiplication

Using number facts

Use times-tables facts up to 12×12 in mental multiplication of large numbers or numbers with up to 2 decimal places e.g. $6 \times 4 = 24$ and $0.06 \times 4 = 0.24$

<u>Stage 1 – Written Multiplication</u>

Build on partitioning to develop grid multiplication e.g. 23×4

Stage 2 – Written Multiplication

Use grid multiplication to multiply 3-digit numbers by 1-digit numbers

×	200	50	3	
6	1200	300	18	= 1518

Use a vertical written algorithm (ladder) to multiply 3-digit numbers by 1-digit numbers e.g. 253×6

Use grid multiplication to multiply 2-digit numbers by 2-digit numbers e.g. 16×48

		6	10	×
640	=	240	400	40
128	=	48	80	8
768				

<u>Stage 3 – Written Multiplication</u>

Short multiplication of 2-, 3- and 4-digit numbers by 1-digit numbers e.g. 435×8

Long multiplication of 2-, 3-and 4-digit numbers by 'teen' numbers e.g. 48×16

<u>Stage 3 – Written Multiplication</u>

Grid multiplication of numbers with up to 2 decimal places by 1-digit numbers

×	- 1	0.3	0.04	
6	6	1.8	0.24	= 8.04

Multiply fractions by 1-digit numbers

e.g.
$$\frac{3}{4} \times 6 = \frac{18}{4} = 4\frac{2}{4} = 4\frac{1}{2}$$

NB Grid multiplication provides a default method for ALL children

<u>Stage 4 – Written Multiplication</u>

Short multiplication of 2-, 3- and 4-digit numbers by 1-digit numbers

Long multiplication of 2-, 3- and 4-digit numbers by 2-digit numbers

<u>Stage 4 – Written Multiplication</u>

Short multiplication of decimal numbers using \times 100 and \div 100

e.g.
$$13.72 \times 6$$
 as $(1372 \times 6) \div 100 = 82.32$

Short multiplication of money

Grid multiplication of numbers with up to 2 decimal places by 1-digit numbers

×	6	0.7	0.06	
4	24	2.8	0.24	= 27.04

Multiply simple pairs of proper fractions

e.g.
$$\frac{1}{2} \times \frac{1}{4} = \frac{1}{8}$$

NB Grid multiplication provides a default method for ALL children